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Abstract
Electron tunnelling in a double-barrier junction with ferromagnetic external
electrodes and a magnetic quantum dot as a spacer is analysed theoretically
in the framework of the nonequilibrium Green function technique. The
considerations are restricted to spin-conserving tunnelling processes through a
quantum dot with a single spin-split discrete level. The Coulomb correlations on
the dot are taken into account in terms of the Hubbard Hamiltonian. Transport
characteristics, including tunnelling magnetoresistance due to rotation of the
magnetic moments of external electrodes, are calculated selfconsistently.

1. Introduction

Recent interest in spin-polarized tunnelling is stimulated by expected applications in
magnetoelectronics and/or spintronics [1, 2]. This applies particularly to the tunnel
magnetoresistance (TMR) effect. By applying a weak magnetic field, one can rotate magnetic
moments of ferromagnetic electrodes from antiparallel (AP) to parallel (P) alignment, and
this rotation is usually accompanied by a drop in the junction resistance [3, 4]. The effect
is similar to the giant magnetoresistance effect discovered a decade ago in metallic magnetic
multilayers [5, 6].

The TMR effect exists in simple planar junctions as well as in more complex ones,
including planar [7] and mesoscopic [8–10] double-barrier junctions, granular systems [11,12],
etc. When the central electrode of a double-barrier junction is small, the corresponding
capacitance C can be small as well. One can then easily reach the range where the charging
energy, Ec = e2/2C, is larger than the thermal energy kBT . If this is the case, the effects
due to discrete charging of the central electrode with single electrons modify the junction
characteristics and lead to Coulomb blockade of electric current below a certain threshold
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voltage and to characteristic Coulomb staircase above [13]. Additional features of electron
tunnelling in mesoscopic double-barrier junctions are due to size quantization of electron states
in the central electrode (referred to as a dot in the following) [14, 15].

In this paper we consider spin-polarized electron tunnelling through a quantum dot with
a single spin-split discrete level. The work differs substantially from earlier publications on
spin-polarized tunnelling in magnetic mesoscopic double-barrier junctions. Generally, the
earlier works can be classified into three groups with respect to the model considered. The
first group includes the papers, where the central electrode was a metallic grain with a high
density of states at the Fermi level, so the effects due to size quantization were irrelevant
and were not taken into account [8–10]. Addition of one extra electron costs then only the
classical charging energy, Ec = e2/2C. The second group includes the works concerning
spin polarized transport in systems with the metallic central electrode being small enough to
support discrete energy levels. The distance between the levels, however, was much smaller
then the classical charging energy Ec. Addition of an extra electron requires than not only
the charging energy, but also the energy related to the level separation, �E. Spin-polarized
tunnelling in this limit (�E � Ec) was considered quite recently [16]. Finally, the works
where the charging effects are smaller than the effects due to size quantization, belong to the
third category. This regime, however, was studied only in the limiting situation, where the
quantum dot supports a single discrete level, and the Coulomb correlations are described by
the Hubbard Hamiltonian (with the corresponding correlation parameter U playing the role
of charging energy). To our knowledge, there are only two publications on spin polarized
tunnelling in this limit [17, 18]. In [17] the case of infinite U and empty level in equilibrium
was analysed within the master equation method. In a recent paper [18], the description based
on the master equation was extended to the case of arbitrary value of the parameter U and
also to arbitrary position of the discrete level. This paper is just a continuation of this work.
First of all, we consider here a more general model. Second, we apply a significantly different
technique, which is more accurate and applicable to a broader range of parameters. More
precisely, the quantum dot is assumed here to be magnetic, with a spin-split discrete level,
whereas in [18] the dot was nonmagnetic. The spin splitting of the level can be caused, for
instance, by an external magnetic field or by coupling of the dot to a spin-polarized substrate.
We show that such a splitting may lead to new effects like enhanced TMR and enhanced spin
polarization of the tunnelling current. Moreover, in [18] the discrete level was assumed to
shift linearly with applied bias, i.e. the effects due to charge accumulated on the dot were
neglected. Such a description, however, is generally not gauge invariant. Therefore, in this
work we use a gauge invariant approach, introduced recently to describe tunelling through
single-level nonmagnetic dots [19]. Apart from this, in [18] the transport characteristics were
calculated within the master equation technique. Such a description is valid when the thermal
energy is much larger than the level width 
, kT � 
 [20]. In this paper, on the other hand,
we use the technique based on the nonequilibrium Green functions [21–25]. This technique
is more general—it also describes coherent tunnelling and takes into account the correlations
on the dot in a more accurate way. Such a description requires self-consistent numerical
calculations of the Green functions, occupation numbers and electrostatic potential of the dot.
The Green functions are calculated in the Hartree–Fock approximation, so the description is
valid above the Kondo temperature. At lower temperatures, however, one should calculate the
Green functions more accurately, by taking into account many-body effects. The Kondo effect
in quantum dots was predicted theoretically long time ago [26], and observed experimentally
quite recently [27].

In general, the two external electrodes of the system under consideration and the quantum
dot may be magnetic. Such a general case offers several possiblities for magnetic configuration.
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Therefore, we will restrict our numerical calculations to two situations: (i) the case where the
external electrodes are ferromagnetic and the dot is nonmagnetic, and (ii) the case when the
dot and one of the external electrodes are magnetic, whereas the second external electrode is
nonmagnetic. In each case two magnetic configurations will be analysed, i.e. the P and AP
ones.

In section 2 we describe the model and analyse the general situation. Numerical results
on tunnelling current and magnetoresistance are shown in section 3. Summary and final
conclusions are presented in section 4.

2. Description of the model

The double-barrier junction considered in this paper consists of a small central part (quantum
dot) which is coupled to two ferromagnetic leads (electrodes) by tunnelling barriers. The
quantum dot is so small, that only a single discrete level is active in the tunnelling processes.
Generally, the dot may be magnetic, so the discrete level is spin dependent.

Tunnelling current depends on relative orientation of the magnetic moments of external
electrodes. Since the amplitude of TMR corresponds to the rotation from AP to P alignment,
we simplify the problem by considering only these two magnetic configurations.

To describe electronic transport, we describe the system by the following model
Hamiltonian:

H = Hl + Hr + Hd + Ht. (1)

Here, Hl and Hr describe the left and right electrodes in the noninteracting particle limit,

Hα =
∑
nkσ

εαnkσ a
+
αnkσ aαnkσ (2)

for α = l and r , where εαnkσ is the single-electron energy in the electrode α for the one-
dimensional wavevector k, channel n and spin σ (σ = ↑,↓), whereas a+

αnkσ and aαnkσ are the
relevant creation and destruction operators. The energy εαnkσ includes the electrostatic energy,

εαnkσ = ε0α
nkσ + eUα

e (3)

where Uα
e is the electrostatic potential of the αth electrode, e is the electron charge, and ε0α

nkσ

is the single-electron energy at vanishing electrostatic potential. In the following we assume
that for negative bias the left (right) electrode is the source (drain) one, so U l

e < U r
e (e < 0).

The term Hd in the Hamiltonian (1) describes the dot and is of the Hubbard form,

Hd =
∑
σ

Eσ c
+
σ cσ + Uc+

↑c↑c+
↓c↓ (4)

where Eσ is the spin-dependent energy of the discrete level and U is the electron correlation
parameter. The energy Eσ of the discrete level can be written as [19]

Eσ = E0
σ + eUe (5)

where E0
σ is the level energy at zero bias and Ue is the electrostatic potential of the dot. We

assume that Ue can be calculated from a simple capacitive model [19]:

e

( ∑
σ

nσ −
∑
σ

n0σ

)
= Cl(Ue − U l

e) + Cr(Ue − U r
e) (6)

where nσ are the occupation numbers, nσ = 〈c+
σ cσ 〉, n0σ are these numbers at zero bias,

whereas Cl and Cr denote the left and right junction capacitances.
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The last term, Ht , in equation (1) stands for the tunnelling part of the Hamiltonian, and
may be written as

Ht =
∑
nkσ

T l
nkσ a

+
lnkσ cσ +

∑
nkσ

T r
nkσ a

+
rnkσ cσ + h.c. (7)

where T l
nkσ and T r

nkσ are the tunnelling matrix elements and it has been additionally assumed
that the electron spin is conserved in the tunnelling processes.

To find tunnelling current we apply the nonequilibrium Green function method [21–25].
Accordingly, we introduce the retarded,

Gr
σ (t1, t2) ≡ 〈〈cσ (t1); c+

σ (t2)〉〉r = −iθ(t1 − t2)〈[cσ (t1), c+
σ (t2)]+〉 (8)

and correlation (or lesser),

G<
σ (t1, t2) ≡ 〈〈cσ (t1); c+

σ (t2)〉〉< = i〈c+
σ (t2)cσ (t1)〉 (9)

Green functions for σ = ↑ and ↓. Since we consider only colinear configurations and the
electron spin is conserved in tunnelling processes, it is sufficient to introduce the Green
functions for each spin separately. However, the Green functions for opposite spin orientations
are not independent, due to electron correlations at the dot. In the above equations electron spin
(σ = ↑ and ↓) refers to a global quantization axis. Reversal of the magnetic moment of αth
electrode is equivalent to interchanging the majority and minority electrons. Thus, if σ = ↑
corresponds to the majority electrons, then after magnetization reversal σ = ↑ corresponds to
the minority ones.

In the steady state the Green functions depend only on the time difference t1 − t2,
so it is more convenient to introduce their Fourier transforms, Gr

σ (ε) ≡ 〈〈cσ ; c+
σ 〉〉r

ε and
G<

σ (ε) ≡ 〈〈cσ ; c+
σ 〉〉<ε .

Knowledge of the Green functions allows one to calculate basic characteristics of
the system out of equilibrium. First, the occupation numbers nσ are given by nσ (t) =
−iG<

σ (t, t) ≡ 〈〈cσ (t); c+
σ (t)〉〉<ε , or in the stationary state by

nσ =
∫

dε

2π
Im 〈〈cσ ; c+

σ 〉〉<ε . (10)

Second, one can also calculate electric current Jσ . A general expression for tunnelling current
was derived by Jauho et al [22]. In our case the stationary current can be written as

Jσ = ie

2h̄

∫
dε

2π

{[

l
σ (ε) − 
r

σ (ε)
]〈〈cσ ; c+

σ 〉〉<ε +
[
fl(ε)


l
σ (ε) − fr(ε)


r
σ (ε)

]
×[〈〈cσ ; c+

σ 〉〉r
ε − 〈〈cσ ; c+

σ 〉〉aε
]}

(11)

where fl(ε) and fr(ε) are the Fermi distribution functions in the left and right electrodes,
respectively, 〈〈cσ ; c+

σ 〉〉aε is the advanced Green function, and 
l
σ and 
r

σ describe contributions
to the half-width of the level due to tunnelling through the left and right barriers, respectively,


α
σ (ε) = 2π

∑
nk

|T α
nkσ |2δ(ε − εαnkσ ) (12)

for α = l and r .
As shown by Jauho et al [22], equation (11) can be simplified further when 
l

σ (ε) and

r
σ (ε) are proportional, 
l

σ (ε) = λ
r
σ (ε). In that case, one can write

Jσ = ie

h̄

∫
dε

2π
[fl(ε) − fr(ε)]


r
σ (ε)


l
σ (ε)


r
σ (ε) + 
l

σ (ε)

[〈〈cσ ; c+
σ 〉〉r

ε − 〈〈cσ ; c+
σ 〉〉aε

]
. (13)

Equation (13) is also valid when the constant λ is spin dependent. In the following we assume
that 
l

σ (ε) and 
r
σ (ε) are constant, i.e. independent of energy, 
α

σ (ε) = 
α
σ for α = l, r .
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The main point now is to find the Green functions which enter equations for the occupation
numbers and electric current. For noninteracting dots (vanishingU ) this can be done relatively
easily in terms of the Dyson equation and self-energy. The situation is more complex for
interacting dots (nonvanishing U ). In that case one can use the method which takes into
account both Dyson equation and equation of motion techniques [24].

Equation of motion for the retarded and lesser Green functions has the form

ε〈〈cσ ; c+
σ 〉〉r

ε = 〈[cσ , c+
σ ]〉 + 〈〈[cσ ,H ]; c+

σ 〉〉r
ε (14)

ε〈〈cσ ; c+
σ 〉〉<ε = 〈〈[cσ ,H ]; c+

σ 〉〉<ε (15)

which gives

(ε − Eσ )〈〈cσ ; c+
σ 〉〉r

ε = 1 +
∑
nk

∑
α=l,r

T α!
nkσ 〈〈aαnkσ ; c+

σ 〉〉r
ε + U〈〈cσ c+

−σ c−σ ; c+
σ 〉〉r

ε (16)

(ε − Eσ )〈〈cσ ; c+
σ 〉〉<ε =

∑
nk

∑
α=l,r

T α!
nkσ 〈〈aαnkσ ; c+

σ 〉〉<ε + U〈〈cσ c+
−σ c−σ ; c+

σ 〉〉<ε . (17)

The new Green functions can be found following the method described in [24]. Accordingly,
the Green functions 〈〈aαnkσ ; c+

σ 〉〉r
ε and 〈〈aαnkσ ; c+

σ 〉〉<ε can be found from the appropriate Dyson
equation. On the other hand, the Green functions 〈〈cσ c+

−σ c−σ ; c+
σ 〉〉r

ε and 〈〈cσ c+
−σ c−σ ; c+

σ 〉〉<ε
can be calculated by writing the appropriate equations of motion, followed by a decoupling
procedure to close the system of equations. In this paper we restrict our considerations to the
Hartree–Fock approximation. For the retarded Green function one finds then,

〈〈cσ ; c+
σ 〉〉r

ε = 1 − n−σ

ε − Eσ − "0σ
+

n−σ

ε − Eσ − U − "0σ
(18)

where

"0σ = −i(
l
σ + 
r

σ )/2. (19)

Similarly, one finds

〈〈cσ ; c+
σ 〉〉<ε = −fl(ε)


l
σ (ε) + fr(ε)


r
σ (ε)


l
σ (ε) + 
r

σ (ε)

[〈〈cσ ; c+
σ 〉〉r

ε − 〈〈cσ ; c+
σ 〉〉aε

]
. (20)

The condition for the electrostatic potential of the dot can be rewritten as

e

( ∫
dε

2π

∑
σ

〈〈cσ ; c+
σ 〉〉<ε −

∫
dε

2π

∑
σ

〈〈cσ ; c+
σ 〉〉0<

ε

)
= Cl(Ue − U l

e) + Cr(Ue − U r
e) (21)

where 〈〈cσ ; c+
σ 〉〉0<

ε is the Green function at zero bias (equilibrium situation). Equations for
electric current, occupation numbers and electrostatic potential of the dot have to be solved
self-consistently. Such a description is gage invariant.

3. Numerical results

Numerical calculations have been performed for two different situations; (i) the case of a non-
magnetic dot and ferromagnetic electrodes, and (ii) the case of a magnetic dot coupled to one
ferromagnetic and one non-magnetic electrodes. For each case the spin dependent current Jσ
and average occupation number nσ , as well as the electrostatic potential Ue of the dot have
been calculated in a self-consistent way. We also assume that in equilibrium (V = 0) the
chemical potentials in both electrodes are equal to zero. When the bias voltage V is applied,
the chemical potential µl of the left electrode is shifted up by eV , µl = eV .

In the following all the energy parameters will be expressed in the units of U . The
capacitance coefficients Cl and Cr are treated as free parameters and the calculations are
performed for e2/Cl = e2/Cl = 5/6. Apart from this, the wide-band limit is assumed and 
α

σ

(α = r, l) are treated as parameters.
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Figure 1. Electrostatic potential (eU ) versus bias voltage (eV ), calculated for a nonmagnetic
dot in the P and AP configurations and for the parameters e2/Cl = e2/Cl = 5/6, E0 = 0.5,

maj = 0.015, 
min = 0.005 and kBT = 
maj. The solid line corresponds to eU/eV = 0.6.

3.1. Non-magnetic dot

The energy level of the dot is now independent of the spin orientation, Eσ = E, and the
calculations are performed for E0

σ = E0 = 0.5. The right (r) and left (l) electrodes are
ferromagnetic and two magnetic configurations are considered—the P and AP ones. The AP
configuration corresponds to reversed magnetic moment of the right (r) electrode. In the P
configuration we assume 
l

↑ = 
r
↑ = 
maj = 0.015 for majority electrons, and 
l

↓ = 
r
↓ =


min = 0.005 for minority electrons. This corresponds to a symmetrical case, 
l
σ = 
r

σ . In
the AP configuration, on the other hand, we have 
l

↑ = 
r
↓ = 
maj and 
l

↓ = 
r
↑ = 
min. The

approach we use is based on the Hartree–Fock approximation, and therefore it is valid only
for temperatures higher than the Kondo temperature. Therefore, it is assumed that kBT is of
the order of 
σ or larger. In numerical calculation we assume kBT = 
maj.

In figure 1 the self-consistent electrostatic potential Ue of the dot is shown as a function of
the bias voltage (more precisely, eUe is shown versus eV ). The potentials Ue in the P and AP
configurations are very similar andUe/V is close to 0.6 in a wide range of the bias voltage (the
line corresponding to Ue/V = 0.6 is also shown in figure 1). Only small deviations from the
linear dependence can be observed in the indicated bias range. For larger voltages the curve
turnes down and the relevant coefficient becomes equal to 0.5 instead of 0.6.

Current–voltage (I–V ) characteristics and the occupation numbers for the dot are
presented in figures 2 and 3 for the P and AP configurations, respectively. For both geometries
we show the spin currents Jσ , the occupation numbers nσ , as well as the total current
J = ∑

σ Jσ and total number of electrons n = ∑
σ nσ . The I–V curves show steps typical

of systems with Coulomb blockade, i.e. the current is exponentially small below a threshold
voltage (first step in the I–V curves).

The currents Jσ flowing in the two spin channels are different in the P and AP geometries.
For the P configuration the current J↑ corresponding to majority electrons is significantly
larger than the current J↓ corresponding to minority electrons (see figure 2(a)). In the AP
configuration, on the other hand, J↑ and J↓ are almost equal in the low and high voltage
regimes, except the region between the two steps. We recall here, that according to our
definition, in the AP configuration the spin σ = ↑ (↓) corresponds to the majority (minority)
electrons in the left l electrode and minority (majority) electrons in the right electrode.
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Figure 2. Electric current (a) and occupation numbers (b) as a function of the bias voltage,
calculated for the P configuration. The parameters are the same as in figure 1.

For eV � 1, the currents J↑ and J↓ increase relatively fast with increasing bias voltage.
The increase in current is accompanied by a similar increase in the occupation numbers.
Both electric current and occupation numbers increase because the dot energy E crosses the
chemical potentialµl of the left (source) electrode, and therefore the level becomes fully active
in electronic transport. In the AP configuration, the increase for n↑ and J↑ is larger than the
corresponding increase for n↓ and J↓.

When the bias voltage reaches values corresponding to the situation when E is well below
andE+U is well above the chemical potentialµl of the left electrode, the occupation numbers
and also electric currents remain almost constant. When, however, E + U approaches the
chemical potential µl, the occupation numbers and electric current increase again and then
become constant when the bias voltage increases further. In the AP configuration, the increase
for n↓ and J↓ is larger than the corresponding increase for n↑ and J↑—just opposite to the
situation at the first step.

In the AP configuration the matrix elements for tunnelling of electrons with spin ↑ out of
the dot through the right barrier are rather small (this spin direction corresponds to minority
electrons in the right electrode). On the other hand, the matrix elements for tunnelling of
electrons with spin ↑ to the dot through the left barrier are large (the majority electrons in the
l electrode). Consequently, the occupation number n↑ of the dot is larger than n↓ (figure 3).
The quantum dot becomes then magnetized on average in the AP configuration, n↑ > n↓. The
magnetic moment of the dot, defined as m = n↑ −n↓, increases rapidly with V at the first step
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Figure 3. The same as in figure 2, but for the AP configuration.
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Figure 4. Magnetic moment of the dot versus bias voltage in both magnetic configurations. The
parameters are the same as in figure 1.

in the I–V curves, as one can see in figure 4. Between the steps the magnetic moment remains
roughly constant and then slightly decreases when V exceeds the value corresponding to the
second step in the I–V characteristics. On the other hand, the average magnetic moment of
the dot is close to zero in the P configuration (figures 2(b) and 4).
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Figure 5. TMR as a function of the bias voltage, calculated for indicated temperatures. The other
parameters are as in figure 1.

The difference in I–V curves for the P and AP configurations leads to TMR effect, which
is defined quantitatively as TMR= (I P − IAP)/IAP, where I P and IAP denote the tunnelling
current in the P and AP configurations, respectively. Variation of TMR with the bias voltage is
shown in figure 5 for three different values of the temperature. At low temperatures the TMR
value is relatively high at low voltages, where electric current is exponentially suppressed,
i.e. below the threshold voltage. However, it decreases at the threshold voltage, and further
decreases again at the voltage corresponding to the second step. A local minimum and a local
maximum appear at the first and second steps, respectively. Between the steps the TMR effect
is roughly constant. The effect remains constant also for voltages above the second step. The
main influence of increasing temperature on TMR occurs for voltages below the threshold
voltage. The enhancement of TMR, found at low temperatures, disappears with increasing T .
Also the local minimum and maximum are washed out for kBT significantly larger than the
level width.

3.2. Magnetic dot

Now we consider the situation when the dot and the left electrode are magnetic, whereas the
right electrode is nonmagnetic (
r

↑ = 
r
↓ = 0.01). The energy levels on the dot are spin-split

and lower energy corresponds to σ = ↑. Numerical calculations are performed for E0↑ = 0.5
and E0↓ = 0.6. As before, two magnetic configurations, P and AP, are considered. In the AP
geometry the magnetization of the left (l) electrode is reversed, whereas the energy structure
of the dot remains unchanged. Thus, in this configuration the spin index σ = ↓ corresponds
to the majority electrons in the left electrode. We assume that the spin dependence of 
l

σ is
determined by properties of the magnetic electrode only. Thus, 
l

↑ and 
l
↓ interchange only

when magnetic configuration varies from one to another.
The currents J↑ and J↓ flowing in the two spin channels, as well as the total current J

are shown in figure 6 for the P configuration. Due to the spin splitting of the energy level,
the tunnelling channel opens first for electrons with spin σ = ↑. Thus, at low voltages the
total current is roughly equal to J↑. The tunnelling channel for electrons with spin σ = ↓
opens at higher voltages. As the bias voltage increases, the current J↑ achieves its local
maximum and then slightly decreases when the level E↓ approaches the chemical potential of
the left (source) electrode and becomes active in transport. A decrease of J↑ (and also n↑) is a
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Figure 6. Current as a function of the bias voltage in the case of a magnetic dot, calculated for the
P configuration and for e2/Cl = e2/Cl = 5/6, E↑ = 0.5, E↓ = 0.6 and kBT = 
maj. Apart from
this, 
maj = 0.015 and 
min = 0.005 for the ferromagnetic electrode, whereas 
↑ = 
↓ = 0.01
for the nonmagnetic electrode.

consequence of the coupling between the two spin states. Similar behaviour takes place also
in the AP magnetic configuration, although there are some differences. In the P configuration
the current J↓ remains rather small (always smaller than J↑). In the AP configuration, on the
other hand, current in the spin-↓ channel increases rather fast and above a certain voltage it
dominates the current J↑. Such I–V characteristics essentially depend on the tunnelling rates
between the dot and the left electrode and follow from the fact that in the P configuration σ = ↑
corresponds to the majority electrons, while in the AP configuration σ = ↑ corresponds to the
minority electrons in the magnetic (left) electrode.

When the bias voltage increase further, the current in the two spin channels of both
magnetic configurations remains constant. This corresponds to the situation where the level
Eσ is below and Eσ + U is above the chemical potential of the left electrode. For higher
voltages the energy level E↑ + U approaches µl and the current J↑ increases again. Electric
current in the spin-↓ channel decreases then slightly and reaches a local shallow minimum.
When the level E↓ + U becomes fully active in transport, J↓ increases as well. Above the
second steps the current remains constant again.

In the case considered now, a nonzero average magnetic moment appears on the dot in
both magnetic configurations. Variation of the magnetic moment m with increasing bias
voltage is presented in figure 7. When the bias increases, the magnetic moment at first
increases and then decreases giving rise to a local maximum. The increase starts when the
level E↑ crosses the Fermi level of the source electrode, which opens tunnelling channel
for σ = ↑ electrons. When, however, the level E↓ enters the ‘tunnelling window’, the
magnetic moment of the dot decreases because now electrons with σ = ↓ can tunnel to
the dot and this diminishes the average magnetic moment. This gives rise to the first local
maximum. A small difference in the positions of the maxima in P and AP configurations
follows from the fact that the decrease in the AP configuration is significantly larger than in
the P one. Indeed, in the AP configuration the magnetic moment after the first maximum
drops to negative values, whereas in the P configuration it is positive for all voltages.
When the bias increases further, another local maximum appears. This is because a new
tunnelling channel opens, first for electrons with σ = ↑ and and then for electrons with
σ = ↓.



Electron tunnelling in a double ferromagnetic junction with a magnetic dot as a spacer 2021

� � � � � �
&���

&���

&���

&���

���

���

���

���

���

���

���

�
	
�	

�
�%

��
�� 

��
��

��
�

�

Figure 7. Magnetic moment of the dot versus bias voltage. The parameters are the same as in
figure 6.
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Figure 8. TMR as a function of the bias voltage, calculated for the parameters as in figure 6.

Changes in the spin polarization of the dot strongly influence the total currents flowing
in the P and AP configurations, and therefore influence also TMR. Variation of TMR with the
bias voltage is depicted in figure 8. At low bias, the value of TMR strongly increases showing
a pronounced peak at eV ∼ 0.9, when the level E↑ becomes fully active in the transport. The
second, smaller peak appears when E↓ is close to µl. However, for higher voltages TMR
practically drops to zero.

4. Summary and conclusions

We have considered tunnelling through nonmagnetic and magnetic quantum dots with a
single discrete level in the presence of Coulomb correlation. In the case of nonmagnetic
dots, both external electrodes were ferromagnetic giving rise to spin polarized transport. On
the other hand, for magnetic dots only one external electrode was magnetic, whereas the
second one was nonmagnetic. Two magnetic configurations were discussed—the P and AP
ones. Considerations have been limited to the Hartree–Fock approximation for the dot Green
function, which is reasonable for temperatures higher than the Kondo temperature.
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It was shown that tunnelling magnetoresistance due to variation of the magnetic
configuration from the AP to P one significantly depends on the bias voltage. The
magnetoresistance is relatively large below the threshold voltage, where, however, the electric
current is exponentially small. Magnitude of TMR in this bias range strongly depends on
temperature and rapidly falls down with increasing T . Between the two steps in the I–V
curves, the TMR effect is enhanced by Coulomb correlations. This enhancement disappears
for voltages above the second step.

The considerations were restricted to single-domain magnetic electrodes. In the limit
of strong tunnelling one may expect exchange coupling between ferromagnetic electrodes—
similar to exchange coupling in simple planar junctions. Such a coupling may have an influence
on magnetic configuration of the junction and on the domain structure in the ferromagnetic
electrodes. Since in our case tunnelling takes place only through a single discrete level and
the external electrodes are macroscopic, one may assume that this coupling is weaker than the
coupling induced by magnetostatic dipolar interaction [28].
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